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We report on a method of constructing multidimensional biorthogonal interpo-
lating multiwavelets. The approach is based upon polynomial interpolation inRd

(C. de Boor and A. Ron,Math. Comput. 58, 198 (1997)) and an extension of the
lifting scheme (J. Kovaˇcević and W. Sweldens,IEEE Trans. Image Process.9,
No. 3, 480 (2000)). The constructed wavelets have compact support, are nearly
isotropic, and retain partial scale invariance leading to a fast and efficient multidi-
mensional wavelet transform. We demonstrate an implementation for these wavelets
of variable polynomial order up to four dimensions. Finally, we show that these
wavelets have a much sparser representation of discontinuous functions as com-
pared to tensor product wavelets, which allows for a more compact and efficient
representation. c© 2002 Elsevier Science (USA)

Key Words:multiwavelets; multidimensional; lifting scheme; polynonimal inter-
polation.

1. INTRODUCTION

Many problems in condensed matter theory, as well as in many other areas of physics,
are solved most conveniently within a variational minimization approach. This requires
the expansion of functions and operators in suitably chosen basis functions. In electronic
structure calculations the choice of plane waves, atomic orbitals, muffin-tin orbitals or
Gaussians [1, 4, 6, 24, 29] has led to the development of different schemes, with different
properties regarding speed, accuracy, and simplicity.

In order to keep the representation of functions and operators small we want to minimize
the size of the basis set used in the variational ansatz. This is possible if the basis set is closely
adapted to the actual solution. Usually this is difficult to accomplish. In electronic structure
calculations, one would like expansions that work equally well for the interstitial part of the
states, which are best described by plane wave like functions, and the atomic core part of
the states, which are best described by atomic orbital like functions, but poorly described
by plane wave like functions. This problem is solved in various ways by the different
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electronic structure schemes. For example, plane wave methods rectify it by replacing the
atomic core region with a suitably chosen, smooth, pseudo-potential [25]. The muffin-tin
orbital methods address the problem by augmenting interstitial plane wave like functions
outside the atomic core region with atomic like solutions inside the atomic core region [1].
Another promising approach which recently has gained attention, and directly addresses
this problem, is the use of wavelets [5, 9, 19, 27, 36, 37]. The purpose of this report is
to describe a new class of wavelets which are well adapted to the problems in electronic
structure calculations. However, the constructed wavelets are quite general and should form
a suitable basis for many different variational problems in physics.

A wavelet basis forms a basis for a multiresolution analysis (MRA). Since a wavelet basis
exists on many scales of resolution it can naturally and easily represent both small scales with
rapidly changing functions, like the atomic core orbitals or the core part of the atomic valence
states, and large-scale structures like interstitial parts of the valence states. Another impor-
tant feature of the wavelet basis is the existence of fast algorithms, the pyramid algorithm,
and the lifting scheme [10, 21, 33, 34]. These algorithms allow the calculation of the expan-
sion of functions to linear order, similar to the fast Fourier transform. Moreover, it has been
shown that a large class of operators is sparse in the wavelet representation [3] (order-N rep-
resentation) and can therefore be treated very efficiently within a variational wavelet ansatz.

A large body of work has been devoted to the construction of one-dimensional wavelets
[11, 13, 14, 16] and it has been implicitly assumed that the extension to higher dimensions
should be done via the tensor product of the one-dimensional functions. However, there are
many problems associated with this approach. If one takes a tensor product representation
of the higher dimensional scaling spaces viaV = V1⊗ V1⊗ . . .⊗ V1, then the number
of different basis functions grows as 2d [10], whered is the dimension, and, since the basis
functions will be products of one-dimensional wavelets and scaling functions of the differ-
ent scales, some of the multidimensional wavelets will be highly biased along coordinate
directions, which is an undesirable property when expanding spherically symmetric func-
tions such as the atomic core states. Another disadvantage of the tensor product basis is that
all scales also get mixed in the representation of operators, rendering them less sparse and
reducing their condition number [31]. This makes the implementation of the tensor product
wavelet basis to higher dimensions undesirable.

In order to overcome these problems we would like to construct a nontensor product
wavelet basis, as isotropic as possible, with liftable filters and compact support in multiple
dimensions. Some nonseparable orthogonal wavelets have been constructed [2, 22, 28, 30],
which, unfortunately, are not easy to use in a computationally efficient implementation. The
lifting scheme devised by Kovaˇcević and Sweldens [21] is able to construct nonseparable
wavelets in higher dimensions. Within their implementation the sampling lattices on differ-
ent scales are distinct; i.e., there is no scale invariance. Unfortunately, this renders a construc-
tive numerical analysis of differential operators difficult. However, one does not need to give
up scale invariance totally, and it is possible to construct filters that repeat after a finite num-
ber of N scales. This implies that the sampling lattices, the lattices of points around which
the scaling functions are centered, also repeat afterN steps. From a multiresolution point
of view such a construction is reminiscent of multiwavelets [20, 26, 32], where a set ofN
scaling functions{φ(i )j | i = 1, . . . , N} spans the scaling spaceVj . In the tensor product rep-
resentation one has one scaling function and 2d − 1 different wavelets functions in a dilation
of 2d. In the construction scheme which we will devise in the present paper we haveN dif-
ferent types of scaling functions andN different types of wavelets, where typicallyN = d.
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In this paper we use a restricted lifting scheme involving anN-periodic scale invariance
to construct a nontensor product MRA analysis ofL2(Rd). In the first section, we give
a short introduction to wavelets and the lifting scheme. Next we introduce an unrecog-
nized relation between lifting and multiwavelets with a simple example in one dimension.
Then we generalize the scheme to higher dimensions. We present examples for separable
and nonseparable nontensor product wavelet basis up to four dimensions and discuss their
isotropy and compression properties. Finally, we discuss the ramifications and future di-
rections of the work. In the appendices, we present two practical algorithms, which are
a natural outcome of the presented work (i) the in-place inverse wavelet transform which
allows the calculation of the value of a function at a point, where the function is represented
in the wavelet basis and (ii) the top–down algorithm which allows for the adaptive wavelet
analysis of a function using a truncation algorithm similar to one devised by Zorinet al.
[38], where as an example of the efficiently of the top–down algorithm, we present the
wavelet transform of the potential generated by 32 arbitrarily placed point charges.

2. WAVELET THEORY

In this section, we first present a brief review of how to construct a multiresolution
analysis, which generates a wavelet basis, in one dimension. Then, we present a brief
review of the lifting scheme and how it is related to, and generates, a MRA. Finally, in the
last section, we show how the lifting scheme can be used to construct multiwavelets, and
we give a simple example. For a more detailed discussion on wavelets, we refer the reader
to [10, 15, 23].

2.1. Multiresolution Analysis

Let us start by considering the decomposition ofL2(R) into a set of nested function
subspaces

. . .Vj−1 ⊂ Vj ⊂ Vj+1 . . . j ∈ Z, (1)

where we associate with each subspaceVj , a set of pointsγ j . These subspaces form a
multiresolution analysis with the following properties:

1. f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1.

2. f (x) ∈ Vj ⇔ f (x + k) ∈ Vj : ∀k ∈ γ j .

3. ∪ j Vj is dense inL2(R) and∩ j Vj = {∅}.
4. There exists for the scaling spaceVj a scaling functionφ j (x) ∈ Vj such that the

collection

φ j (x + k) : ∀k ∈ γ j (2)

forms a Riesz basis ofVj ,

Vj = span{φ j (x + k) : k ∈ γ j }. (3)

There also exists awavelet functionψ j (x)which spans the detail spaceWj , the complement
of Vj ∈ Vj+1; i.e.,

Vj+1 = Wj ⊕ Vj , Vj ⊥ Wj , (4)
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and ⊕
j

Wj = L2(R). (5)

In the case of a biorthogonal basis, these properties also hold for the dual spaces,Ṽj and
W̃j , but with the biorthogonality conditions [23],

Ṽj ⊥ Wj and Vj ⊥ W̃j . (6)

Because of the properties of the multiresolution analysis, it is possible to show that the
scaling and dual scaling functions obey a two-scale relation,{

φ(x) =∑k hkφ(2x − k)

φ̃(x) =∑k h̃kφ̃(2x − k)
(7)

and for the wavelet and dual wavelets we have the relations,{
ψ(x) =∑k gkφ(2x − k)

ψ̃(x) =∑k g̃kφ̃(2x − k)
, (8)

with the biorthogonality condition,∫
dx

[
φ̃ jk(x)

ψ̃ jk(x)

]
· [φ j ′k′(x) ψ j ′k′(x)] =

[
δ j j ′δkk′ 0

0 δ j j ′δ j j ′

]
. (9)

Thehk, gk, h̃k, andg̃k ∈ l2(Z) are the dual and nondual filter coefficients.
A wavelet transform of a function can be constructed via the pyramid algorithm [10].

Consider a function expanded on an arbitrary resolution scaleJ andx ∈ [0, 1],

f (x) =
∑

k

f φJkφ(2
J x − k). (10)

The wavelet transform of this function can be computed by successive applications of
Eqs. (7) and (8) using the dual filters, and the inverse transform can be computed by the
successive application of the nondual filters. The application of the filters is depicted in
Fig. 1, where we are showing one step of the pyramid algorithm.

FIG. 1. A diagram of the two-channel filter bank, which represents one step of the pyramid algorithm for a
biorthogonal MRA.
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2.2. The Lifting Scheme

One of the more elegant ways of generating a biorthogonal MRA is via the lifting scheme
[21]. This method is straightforward to implement and can easily be adapted to multiple
dimensions. The lifting scheme is constructed via three stages:split, predict,andupdate.
First, let us start by considering a data setλ0. In the first stage we split the data set into
two smaller disjoint subsetsλ−1 andγ−1, whereλ0 = γ−1 ∪ λ−1 andγ−1 ∩ λ−1 = {∅}. The
simplest way of splitting the data is into the even and odd numbers. This is sometimes
referred to as the lazy wavelet transform [21]. Next, let us use the data set,λ−1, to predict
the values of the other data set,γ−1, i.e.,

γ−1 = P(λ−1), (11)

whereP is the predict operator. This would allow us to replace the original data set with
the subsetλ−1. In practice, it is usually not possible to construct a predict operator which
exactly predictsγ−1 from λ−1. Let us instead replaceγ−1 with the difference,

γ w−1 = γ−1− P(λ−1). (12)

The subsetγ w−1 now encodes how muchγ−1 deviates from the model on which the prediction
was constructed, a set of details. It is also a simple matter to recover the original data set
by reversing the sign of Eq. (12). In many cases we would also like to preserve some of the
properties of the original data set,λ0, into the new data set,λ−1. We can do this by devising
a new operator which usesγ−1 to updateλ−1,

λs
−1 = λ−1+U (γ−1), (13)

whereU is the update operator. One nice property of the lifting scheme is that the inverse pro-
cess is easy to accomplish just by reversing the signs of Eqs. (12) and (13), which is illustrated
in Fig. 2. The process depicted in Fig. 2 can also be interpreted as one step of the pyramid
algorithm, where theλs

j ’s are the scaling function expansion coefficients, and theγ wj ’s are
the wavelet functions expansion coefficients. This can be seen by realizing that the process
depicted in Fig. 2 is also a biorthogonal MRA, as was depicted in Fig. 1, where theλs

j ’s
form the resolution spaces and theγ wj ’s form the detail spaces.

Another property of the lifting scheme is that the operations can be chained together. This
allows the lifting scheme to be used to modify any existing wavelet transforms. Consider

FIG. 2. A diagram of the predict and update operations of the lifting scheme.
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FIG. 3. A diagram of the modification of the filters using a predict operation.

Fig. 3, the predict step will modify the original filters by

H̃ j = H̃orig
j Hj = Horig

j + Pj Gorig
j

G̃ j = G̃orig
j − P∗j H̃ orig

j G j = Gold
j

(14)

and similarly for an update step the original filters get modified by (not in figure)

H̃ j = H̃orig
j +U j G̃

orig
j Hj = Horig

j

G̃ j = G̃orig
j G j = Gorig

j −U ∗j Horig
j .

(15)

For the case where the original filters are the lazy wavelet transform (just splitting the data
sets), we can use Eqs. (14) and (15) to deduce the new biorthogonal filters as

H̃ j = 1+U j (1− P∗j ) Hj = 1+ Pj

G̃ j = 1− P∗j G j = 1−U ∗j (1+ Pj ).
(16)

The asterisks denote the complex conjugation of the filters, which is included for the gen-
eral case of complex coefficients. The basis functions associated with someγ wjk or λs

jk

of the lifting scheme can easily be generated by the inverse pyramid algorithm, where
{γ w} j ′k′ = δ j j ′δkk′ generates the waveletψ j (x − k), and {λs} j ′k′ = δ j j ′δkk′ generates the
scaling functionφ j (x − k). In the case where there is no update, the dual scaling functions
correspond to Dirac delta functions. The dual wavelet functions are sums of Dirac delta
functions, and the nondual functions correspond to polynomial interpolating wavelets [8],
where the wavelets and scaling functions are related by

ψ(x) = φ(2x − 1). (17)

Notice, that without the update the dual scaling and wavelet functions do not form a proper
basis ofL2(R), since Dirac delta functions are not square integrable. However, the primal
set forms a basis ofL2(R) and we will therefore still use the expression biorthogonal basis,
even if it is not strictly correct.

In the next section we show how the lifting scheme can be used to generate multiwavelets,
a connection which we have found to be very informative in our analysis.
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2.3. The Lifting Scheme and Multiwavelets

In this section we present a multiwavelet derived from lifting in one dimension. We
construct this by performing two consecutive subdivision and predict steps, where we may
choose the order of the two predict polynomials to be different. As usual in the lifting
scheme we start by defining a subdivision. The original lattice is00 = Z, and we subdivide
into the scaling set0(1)s = 200 and the wavelet set0(1)w = 200+ 1. This corresponds to
splitting the set of integers into even and odd numbers. Next, we split the lattice again into
the new scaling set0(2)s = 201 = 400 and the new wavelet set0(1)w = 201+ 2= 400+ 2.
The corresponding two-scale relations for the scaling functions are

φ(1)(x) = φ(2)(2x)+
∑

m∈0(1)w
P(1)

m φ(2)(2x −m)

(18)
φ(2)(x) = φ(1)(2x)+

∑
m∈0(2)w

P(2)
m φ(1)(2x −m),

where we have two separate scaling functions (φ(1),(2)) on different scales. TheP(1),(2)
m are

the prediction coefficients of the lifting scheme. We can decouple Eqs. (18)

φ(1)(x) = φ(1)(4x)+
∑

k∈0(2)w
P(2)

m φ(1)(4x − 2k)+
∑

k∈0(1)w
P(1)

m φ(1)(4x − 2k)

+
∑

k∈0(1)w ;k′∈0(2)w
P(1)

m P(2)
m′ φ

(1)(4x − 2k− k′)

(19)
φ(2)(x) = φ(2)(4x)+

∑
k∈02

w

P(2)
m φ(2)(4x − 2k)+

∑
k∈0(1)w

P(1)
m φ(2)(4x − 2k)

+
∑

k∈0(1)w ;k′∈0(2)w
P(1)

m P(2)
m′ φ

(2)(4x − 2k′ − k),

which can be phrased in a typical multiwavelet form,

Φ(x) =
(
φ(1)(x)

φ(2)(x)

)
=
∑

k

Hk

(
φ(1)(4x − k)

φ(2)(4x − k)

)
=
∑

k

HkΦ(4x − k). (20)

The matricesHk are of the form

Hk =
(

h(1)k 0

0 h(2)k

)
,

where

h(1),(2)k =


1 k = 0

P(2),(1)
k k ∈ 0(2),(1)w

P(1),(2)
k +∑k′∈0(1),(2)w

P(1),(2)
k′ P(2),(1)

k+k′ k ∈ 0(1),(2)w

. (21)

In a multiwavelet setting the functionsφ(1),(2) span the scaling spaces. The wavelets are cho-
sen from the interpolating algorithm asψ(1)(x)=φ(1)(4x− 3) andψ(2)(x)=φ(2)(4x− 3),
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and their two-scale relation in a multiwavelet form becomes

9(x) =
(
ψ(1)(x)

ψ(2)(x)

)
=
∑

k

GkΦ(4x − k), (22)

where

Gk =
(
δ0k+3 0

0 δ0k+3

)
. (23)

The subdivision process above could have been continued inN steps withN different
filters. The above analysis would then lead to multiwavelets of multiplicityN. The fully
generalized lifting scheme (no scale invariance of the filters) can then be viewed as a
multiwavelet with infinitely many components.

3. MULTIWAVELETS IN MULTIPLE DIMENSIONS

In this section we extend the scheme from the previous section to higher dimensions.
This allows us to construct a nontensor product MRA inL2(Rd). We start by generalizing
the MRA toRd. Let us consider the decomposition ofL2(Rd) into a set of nested subspaces
[23, 34].

. . .V j−1 ⊂ V j ⊂ V j+1 . . . j ∈ Z, (24)

where we associate with each subspaceV j , a lattice0 j ∈ Zd defined as0 j = L jZd, where
L j is a nonsingulard × d matrix which generates the lattice, andDj+1 is a nonsingular
d × d dilation matrix which projects us from the lattice associated withV j+1 to the lattice
associated withV j ; i.e.,

0 j = D j+10 j+1. (25)

The subspacesV J form a multiresolution analysis with the following properties:

1. f (x) ∈ V j ⇔ f (D j+1x) ∈ V j+1.

2. f (x) ∈ V j ⇔ f (x+ k) ∈ V j : ∀k ∈ 0 j .

3. ∪ j V j is dense inL2(Rd) and∩ j V j = {∅}.
4. There exists for the scaling spaceV j a scaling functionφ j (x) ∈ V j such that the

collection

φ j (x+ k) : ∀k ∈ 0 j (26)

forms a Riesz basis ofV j ;

V j = span{φ j (x+ k) : k ∈ 0 j }. (27)

There also exists awavelet functionψ j (x)which spans the detail spaceW j , the complement
of V j ∈ V j+1 such that

V j+1 =W j ⊕ V j , W j ⊥ V j , (28)

and ⊕
j

W j = L2(Rd). (29)
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Again, in the case of a biorthogonal basis, these properties also hold for the dual spaces,
Ṽ j andW̃ j , but with the biorthogonality conditions,

Ṽ j ⊥W j and V j ⊥ W̃ j . (30)

The lattices0 j associated with the nested subspacesVj can be constructed via a subdivision
of sublattices. A lattice0 j is decomposed intom disjoint sublattices via

0 j =
M j⋃
i=1

(
D j0 j + t( j )

i

)
, (31)

wheret( j )
i are translation vectors in0 j , and M j = det[D j ]. We will make major use of

Eq. (31) in our multidimensional lattice decomposition algorithm which is described in
more detail in Section 3.3. The arguments of the scaling and wavelet functions in the
two-scale relation are now scaled by the dilation matrixD j ,φ j k(x) = M

− 1
2

j

∑
k′∈0 j

h j k′φ j k(D j x− k′)

φ̃ j k(x) = M
− 1

2
j

∑
k′∈0̃ j

h̃ j k′φ j k(D j x− k′)
, (32)

and also for the wavelets,ψ j k(x) = M
− 1

2
j

∑
k′∈0̃ j

gj k′φ j k(D j x− k′)

ψ̃ j k(x) = M
− 1

2
j

∑
k′∈0̃ j

g̃ j k′ φ̃ j k(D j x− k′)
, (33)

which, for a biorthogonal basis, obey the biorthogonality condition:∫
dx

[
φ̃ j k(x)

ψ̃ j k(x)

]
[φ j ′k′(x) ψ j ′k′(x)] =

[
δ j j ′δkk ′ 0

0 δ j j ′δkk ′

]
. (34)

Hereh j k , gν; j k , h̃ j k , andg̃ν; j k ∈ l2(0 j ) are the dual and nondual filter coefficients.
The generalization to multiple dimensions of a multiresolution analysis usually proceeds

via a tensor product scheme. The tensor product representation of a higher dimensional
scaling spaceV J using one-dimensional scaling spacesV1

J is created via

V J = V1
J ⊗ V1

J ⊗ · · · ⊗ V1
J , (35)

whereJ denotes scaling spaces separated byd scales; i.e.,V J−1 is a space which is dilated
by a factor of two in all dimensions as compared toV J . The dual spaces follow in analogy.
These spaces can be projected into the detail spaces using Eq. (4),

V J =
{

V1
J−1⊕W1

J−1

}⊗ {V1
J−1⊕W1

J−1

}⊗ · · · ⊗ {V1
J−1⊕W1

J−1

}
(36)

=
V1

0

J−1⊕
j=0

W1
j

⊗
V1

0

J−1⊕
j=0

W1
j

⊗ · · · ⊗
V1

0

J−1⊕
j=0

W1
j

 (37)

= V0

J−1⊕
j=0

W j , (38)
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where

W J =
⊕

{ j1, j2... jd}
W1

j1 ⊗W1
j2 ⊗ · · · ⊗W1

jd

⊕
{ j2... jd}

V0⊗W1
j2 ⊗ . . .⊗W1

jd

⊕
· · · . (39)

Here we immediately see the problem which develops. The multidimensional wavelet func-
tions will be the products of one-dimensional wavelet functions of different resolutions
scales such as

ψJk(x) = ψ j1k1(x1)ψ j2k2(x2) . . . ψ jdkd(xd), (40)

where the{ jn} ∈ [0, J − 1]. Some of these wavelets mix small and large resolution scales
and will therefore be highly anisotropic. This may lead to a large degradation of their perfor-
mance at compressing functions, which will be shown in Section 4. The new multiwavelets
are not constructed in this fashion, instead, theJth level scaling space is decomposed into
N scaling spaces via

. . .V(N)
J−1 ⊂ V(1)

J ⊂ V(2)
J ⊂ · · · ⊂ V(N)

J ⊂ V(1)
J+1 . . . , (41)

with the corresponding detail spacesW(n)
J given by the relations,

V(n)
J = V(n−1)

J ⊕W(n−1)
J and V(1)

J = V(N)
J−1⊕W(N)

J−1. (42)

HereJ refers to scaling spaces separated byN scales. Using Eqs. (42) we can projectV J

into the detail spaces,

V J = V(N)
J (43)

= V(N−1)
J ⊕W(N−1)

J (44)

= V J−1⊕
{

W(1)
J ⊕ · · · ⊕W(N−1)

J ⊕W(N)
j−1

}
(45)

= V0


J⊕

j=1

{
W(1)

j ⊕ · · · ⊕W(N−1)
j ⊕W(N)

j−1

}, (46)

where we define the multiwavelet space

W J−1 =W(1)
J ⊕W(2)

J ⊕ · · · ⊕W(N)
J−1; (47)

i.e.,

V J = V0

J−1⊕
j=0

W j .

There is no mixing (products) of scales in this decomposition, instead there is a sum ofN
distinct detail spaces per scale, which forms a direct link to the multiwavelet framework.
This will be discussed more in Section 3.2.
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3.1. Polynomial Interpolation on Lattices

Given the sublatticeÄ( j )
i = D j0 j + t(i )j , we can construct a polynomial interpolation,

5(Ä
( j )
i ), upon a restricted set of points. This polynomial interpolation can be used to pre-

dict an approximation of the function, which, via the lifting scheme devised by Sweldens
et al. [21, 33, 34], will allow the generation of a multiresolution analysis [23]. Building
polynomial interpolating filters ind dimensions of orderP requires that we can construct
a polynomial interpolation inRd. In one dimension, polynomial interpolation always has a
Vandermonde matrix which is invertible [31]. However, in higher dimensions, for a poly-
nomial interpolation of a given order, the Vandermonde matrix is not always invertible and
the system is either over or under determined. In this case, one may need either fewer or
more interpolation points. However, the order of the polynomial interpolation is determined
not only by the number of interpolation points, but also by their configuration. For exam-
ple, in general, three points inR2 define a linear interpolation, but if the three points are
all co-linear, they define a quadratic interpolation. An elegant solution to the problem of
polynomial interpolation in higher dimensions is provided by de Boor and Ron [17]. First,
they specify the configuration off points inRd, and then they find the minimal polynomial
space which spans it. The de Boor–Ron algorithm has been used throughout this work in
the construction of the polynomial interpolating filters inRd.

3.2. Construction of the Filters

Following the procedure outlined above, we can construct polynomial interpolating
multiwavelets from a nonstationary lifting scheme. We subdivide the scaling space (lattice)
into two subspaces (sublattices), use a suitable polynomial interpolation for the predict step
of the lifting scheme, and subdivide the scaling space again, with possibly a different subdi-
vision or polynomial interpolation. The filters are constructed via the following procedure:

• Separatethe lattice (scaling space) on scalej into two sublattices

Ä( j )
s = D j0 j

Ä( j )
w = D j0 j + t j (48)

0 j = Ä( j )
s ∪Ä( j )

w .

• Construct a polynomial interpolation,PN(x), around a pointp0 ∈ Ä( j )
w = D j0 j + t j

for a restricted set of points on the disjoint sublatticeÄ( j )
s = D j0 j .

• Predict the value of the function on pointp0 ∈ Äw using the polynomial interpolation
on Äs. Since the filters are translationally invariant (apart from boundaries), the same
polynomial interpolation can be used for every point on the latticeÄ( j )

w . The scaling and
wavelet filters are given by

h̃ j k = δk,0 h j k = δk,0+ Pj k
, (49)

g̃j k = δk,0− Pj k gj k = δk,0

wherePj k are the polynomial interpolating coefficients (PIC’s).
• Calculate the difference of the predicted value from the actual value of the function

at pointp0, i.e., the wavelet coefficient (via thẽgj k filter).
• Repeatthis procedure for the lattice0 j−1 = Ä( j )

s .
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A MRA of an object, say a function ofRd → R, using these filters can be performed
via the lifting scheme [21, 33, 34]. Running the above process backward will reconstruct
the function; i.e., it performs the inverse wavelet transform. A similar scheme was used
by Kovačević and Sweldens [21]. In their scheme each lattice0 j is usually different; i.e.,
there is no scale invariance. However, it is possible to regain partial scale invariance, not as
j → j + 1, but as previously mentioned,j → j + N. This condition requires that

j+N∏
i= j

Di = 2I , (50)

which impliesD j = D j+N and0 j+N = 1
2I0 j ; i.e., afterN dilation steps we return to the

starting lattice, but with all the directions dilated by a factor of 2. Instead of scale invariance,
we have anN-scale invariance. Given that we split our lattices by a factor of 2, the minimal
N is the dimensiond of Rd. However, it should be noted that in special cases it can be true
that some subsets of the dilation matrices are the same.

To make the connection with multiwavelets we write down the two-scale relations be-
tween the scaling functions on each subsequent sublattice0 j ,

φ(1)(x)=
∑

k∈00+t0

h1kφ
(2)(D1x− k)

φ(2)(x)=
∑

k∈01+t1

h2kφ
(3)(D2x− k)

...
...

φ(N)(x)=
∑

k∈0N−1+tN−1

hNkφ
(1)(DNx− k).

(51)

By back substituting each consecutive scaling function, Eqs. (51) can easily be cast into the
multiwavelet from of the two-scale relation,

8(x) =
∑
k∈00

Hk8(2Ix − k), (52)

with the corresponding wavelet relation,

9(x) =
∑
k∈00

Gk8(2Ix − k). (53)

HereΦ andΨ are the vectors ofN different scaling and wavelet functions

Φ = (φ(1), φ(2), . . . φ(N))T
and Ψ = (ψ(1), ψ(2), . . . ψ(N)

)T
,

and the filters are

Hk =

 H (1)
k · · · 0
...

. . .
...

0 · · · H (N)
k

 and Gk =

 δ0,k+tvec · · · 0
...

. . .
...

0 · · · δ0,k+tvec

, (54)

where

H (n)
k =

∑
{k1,k2...kN }

h1k1 . . . hNkN δ(2k − kn − Dnkn+1− DnDn+1kn+2 . . .) (55)
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and

tvec=
N−1∑
i=0

t i , (56)

i.e., as a sum of translation vectors. The dual relations follow in analogy.

3.3. Decomposition of the Lattices

In a wavelet subdivision scheme one might intuitively start from a fine set and proceed to
split the set into wavelet and scaling subsets. However, in the multidimensional case this is
not necessarily the most straightforward approach when constructing a MRA via the lifting
scheme. In the present case, we start from a course set and proceed via a series of lattice
translates and unions to a finer set, and then, after generatingN lattices fromN translates,
deduce the dilation matrixes by reversing the procedure. Our procedure is based on Eq. (31)
with the following lattice subdivision conditions:

• The integer translate,t p, are always at the bounds of [0, 1]d cube. This restricts the set
of translation vectors to those which point from the origin to each corner of ad-dimensional
cube.
• Points are never mapped into points; i.e.,Ä( j )

s ∩Ä( j )
w = {∅}.

• The number of elements in the new lattice doubles at each step, which is automatically
obeyed if the first two conditions are met. This insures that

det [D j ] = M j = 2. (57)

A lattice construction obeying these conditions will create a tree-like structure of allowable
translates. Our algorithm for constructing the lattice subdivision/union inRd is as follows:

ALGORIHM 1.
Start with a simple cubic lattice,00 = 2IZd, collect this lattice into the set of allowable

lattices{0 j=0}.
Loop from j = 1 to j = d and do steps (a) and (b).

(a) For each lattice in{0 j }, translate this lattice by each translate vectort p of the set
of translate vectors to obtain a new lattice0(n,p)j = 0(n)j + t p, where0(n)j is thenth
lattice in the set{0 j }.

(b) If 0(n)j ∩ 0(n,p)j = {∅} add0(n)j ∪ 0(n,p)j to {0 j+1}, else discard.

Each “translate chain” will terminate at the simple cubic lattice0d = IZd, where a
translate chain is the set of allowable translates which take us from00 to 0d = 1

200. The
dilation matrices can then be deduced from Eq. (25). Notice that without an automatic
procedure as described above a construction of a lattice decomposition in higher dimensions
is impossible in practice.

3.4. Examples

We will now show some examples of how algorithm 1 can be used to construct different
lattice decompositions. In the first example we show how to construct a set of decompositions
which leads to a separable multiwavelet basis in three dimensions. In the next two examples,



376 TYMCZAK, NIKLASSON, AND RÖDER

we show how to construct sublattices which lead to nonseparable multiwavelets in three
and four dimensions.

3.4.1. Separable, Three-Dimensional, Polynomial Interpolating Multiwavelets

In Rd the simplest lattice subdivision/union scheme is to use a set of orthogonal translate
vectors. We will follow the procedure outline in algorithm 1, but for the specific choice of
a translate chain,

{t0 = (0, 0, 1), t1 = (0, 1, 0), t2 = (1, 0, 0)}. (58)

To elaborate, let us start by the lattice defined by the lattice generator,

L0 =
2 0 0

0 2 0
0 0 2

. (59)

This is the simple cubic lattice,00 = L0Z. Let us translate this lattice byt0 = (0, 0, 1) and
then generate the union of00 with the translated version of itself. This gives us the lattice
01 and its generatorL1,

01 = 00∪ (00+ t0), L1 =
2 0 0

0 2 0
0 0 1

. (60)

This is equivalent to subdividing01 into the two disjoint sublattices,

Äs = D101 = 00
(61)

Äw = D101+ t0,

where

D1 =
1 0 0

0 1 0
0 0 2

. (62)

Let us repeat this process for the next lattice01 by translating byt1 = (0, 1, 0). This give
us

02 = 01∪ (01+ t1), L2 =
2 0 0

0 1 0
0 0 1

, (63)

which is the same as subdividing02 into the two disjoint sublattices,

Äs = D202 = 01
(64)

Äw = D202+ t1,

where

D2 =
1 0 0

0 2 0
0 0 1

. (65)
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Repeating this process a final time for02 by translating byt2 = (1, 0, 0), we get

03 = 02∪ (02+ t2), L3 =
1 0 0

0 1 0
0 0 1

 , (66)

which is the same as subdividing03 into the two disjoint sublattices,

Äs = D303 = 02
(67)

Äw = D303+ t2,

where

D3 =
2 0 0

0 1 0
0 0 1

. (68)

We have now returned to the original lattice contracted by a factor of 2 in each direction;
i.e.,03 = 1

2Γ0. The filters obtained from this subdivision scheme are all one-dimensional,
aligned along coordinate directions. The multiwavelets are therefore products of one-
dimentional functions, e.g., for the scaling functions,

8Jk(x) =


φ
(1)
J,k(x)

φ
(2)
J,k(x)

φ
(3)
J,k(x)

 =


φ
(a)
J,kx
(x)φ(b)J,ky

(y)φ(c)J,kz
(z)

φ
(a)
J,kx
(x)φ(b)J,ky

(y)φ(c)J,kz
(2z)

φ
(a)
J,kx
(x)φ(b)J,ky

(2y)φ(c)J,kz
(2z)

 , (69)

and similarly for the wavelets and the dual functions. These separable multiwavelets are not
tensor product wavelets; they do not mix scales and are easily generalized to any dimension.

3.4.2. Nonseparable Three-Dimensional Polynomial Interpolating Multiwavelets

In the case of nonseparable multiwavelets, our implementation is more difficult. Let us
again consider in three dimensions a simple cubic lattice00 = L0Z3, as seen in Fig. 4a,
with the lattice generator

L0 =
2 0 0

0 2 0
0 0 2

. (70)

Translate00 by t0 = (1, 1, 1) and generate the union of this new lattice with itself, as shown
in Fig. 4b. This gives us a body centered cubic (BCC) lattice and lattice generator,

01 = 00∪ (00+ t0), L1 =
−1 1 1

1 −1 1
1 1 −1

. (71)

This is equivalent to subdividing01 into the two disjoint sublattices,

Äs = D101 = 00
(72)

Äw = D101+ t0,
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where

D1 =
0 1 1

1 0 1
1 1 0

. (73)

We now translate01 by t1 = (0, 1, 1) and generate the union, as shown in Fig. 4c. This
gives us a stretched body centered cubic lattice (sBCC) with lattice generator,

02 = 01∪ (01+ t1), L2 =
1 0 0

0 1 1
0 1 −1

, (74)

which is the same as subdividing02 into the two disjoint sublattices,

Äs = D202 = 01
(75)

Äw = D202+ t1,

where

D2 =
1 0 1

1 0 −1
1 1 −1

. (76)

Finally, we translate02 by t1 = (0, 0, 1) and then generate the union to obtain the lattice
shown in Fig. 4d. This gets us back to a simple cubic lattice with lattice generator,

03 = 02∪ (02+ t2), L3 =
1 0 0

0 1 0
0 0 1

, (77)

which is the same as subdividing03 into the two disjoint sublattices,

Äs = D303 = 02
(78)

Äw = D303+ t2,

where

D3 =
1 0 0

0 1 1
0 1 −1

 . (79)

We have now returned to the original lattice, i.e.,03 = 1
200, contracted by a factor of 2 in each

direction, and withD1D2D3 = 2I . Tables I–III give the PIC’s for each lattice refinement
in three dimensions, and Fig. 5 shows the placement of the points for the polynomial
interpolation. The number in parentheses is the interpolation point, and the number before
the parentheses is the number of interpolation points.
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TABLE I

The PIC’s for the Three-Dimensional Filters: Cubic→BCC

Order No. points Points P00 + t1

1 8 {8(1)}
{
−1

8

}
3 32 {8(1), 24(2)}

{
11

64
,− 1

64

}
5 56 {8(1), 24(2), 24(3)}

{
91

512
,− 10

512
,

1

512

}
7 88 {8(1), 24(2), 24(3), 8(5)}

{
801

4096
,− 117

4096
,

12

4096
,− 1

4096

}

TABLE II

The PIC’s for the Three-Dimensional Filters: BCC→ sBCC

Order No. points Points P01 + t2

1 6 {2(1), 4(2)}
{

1

3
,

1

12

}
2 14 {2(1), 4(2), 8(3)}

{
1

4
,

1

4
,− 1

16

}
3 22 {2(1), 4(2), 8(3), 8(4)}

{
76

176
,

20

176
,− 4

176
,− 3

176

}
4 32 {2(1), 4(2), 8(3), 8(4), 8(5)}

{
156

384
,

48

384
,− 6

384
,− 8

384
,− 1

384

}
5 40 {2(1), 4(2), 8(3), 8(4), 8(5), 2(6), 8(7)}

{
6486

16064
,

2040

16064
,− 267

16064
,− 121

16064
,

267

16064
,− 8

16064
,

4

16064

}

TABLE III

The PIC’s for the Three-Dimensional Filters: sBCC→Cubic

Order No. points Points P02 + t3

1 4 {4(1)}
{

1

4

}
3 12 {4(1), 8(2)}

{
10

32
,− 1

32

}
5 16 {4(1), 8(2), 4(3)}

{
81

256
,− 9

256
,

1

256

}
7 32 {4(1), 8(2), 4(3), 8(4), 8(5)}

{
1404

4096
,− 231

4096
,

34

4096
,

27

4096
,− 3

4096

}
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FIG. 4. The lattice translates used in constructing the three-dimensional, nonseparable polynomial interpo-
lating multiwavelet.

FIG. 5. Placement of the points for the polynomial interpolation. (a) Points for the BCC filter, (b) points for
the SBCC filter, and (c) points for the cubic filter.
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3.4.3. Nonseparable, Four-Dimensional, Polynomial Interpolating Multiwavelets

The procedure that we have devised in the previous section can be extended to any dimen-
sion. To show this we also implement our construction in four dimensions. We emphasize
that the only constraints are that the lattice translate we choose cannot map lattice points
into lattice points, and that we double the number of points at each step. This was easy
to visualize in three dimensions, but it is difficult in four dimensions. However, by using
algorithm 1 outlined in the previous section, it is straightforward to construct lattice decom-
positions for the multiresolution analysis. Let us start by the lattice00 = L0Z4 defined by
the lattice generator,

L0 =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 . (80)

This is the hyper-cubic lattice. Translate this lattice byt0 = (1, 1, 1, 1) and generate the
union. This give us a four-dimensional analog to the three-dimensional BCC lattice with
lattice generator,

01 = 00∪ (00+ t0), L1 =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 1

 , (81)

which is the same as subdividing01 into the two disjoint sublattices,

Äs = D101 = 00
(82)

Äw = D101+ t0,

where

D1 =


−1 0 0 1
0 −1 0 1
0 0 −1 1
1 1 1 −1

 . (83)

Next, translate01 by t1 = (0, 1, 0, 1) and generate the union. This gives a four-dimensional,
rotated hyper-cubic lattice with lattice generator,

02 = 01∪ (01+ t1), L2 =


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 , (84)

which is the same as subdividing02 into the two disjoint sublattices,

Äs = D202 = 01
(85)

Äw = D202+ t1,
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where

D2 =


0 1 −1 0
1 0 0 −1
0 1 1 0
1 1 0 0

 , (86)

Now, translate02 by t2 = (0, 0, 1, 1) and generate the union. This gives a four-dimensional,
rotated hyper-BCC lattice with lattice generator,

03 = 02∪ (02+ t2), L3 =


0 1 −1 0
1 0 0 −1
0 1 1 0
1 1 0 0

 , (87)

which is the same as subdividing03 into the two disjoint sublattices,

Äs = D303 = 02
(88)

Äw = D303+ t2,

where

D3=


−1 0 0 1
0 −1 0 1
0 0 −1 1
1 1 1 −1

 . (89)

Finally, let us translate03 by t3 = (0, 0, 0, 1) and generate the union. This gives us back
a hyper-cubic lattice with lattice generator,

04 = 03∪ (03+ t3), L4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (90)

which is the same as subdividing04 into the two disjoint sublattices,

Äs = D404 = 03
(91)

Äw = D404+ t3,

where

D4 =


0 1 −1 0
1 0 0 −1
0 1 1 0
1 1 0 0

 . (92)

Once againD1D2D3D4 = 2I . Tables IV–VII give the PIC’s for each lattice refinement in
four dimensions. The number before the braces is how many points there are with these
coordinates. The number in braces is the placement of the points, where we would apply
all cyclic permutations to this point, i.e.,

(1, 0, 0, 0)→ {(±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0), (0, 0, 0,±1)}. (93)



MULTIDIMENSIONAL MULTIWAVELETS 383

TABLE IV

The PIC’s for the Four-Dimensional Filters: Hyper-Cubic→Hyper-BCC

Order No. points Points P00+t1

1 8 {8(1, 0, 0, 0)}
{

1

8

}
3 40 {8(1, 0, 0, 0), 32(1, 1, 1, 0)}

{
12

64
,− 1

64

}
5 88 {8(1, 0, 0, 0), 32(1, 1, 1, 0), 48(2, 1, 0, 0)}

{
114

640
,− 7

640
,− 1

640

}

TABLE V

The PIC’s for the Four-Dimensional Filters: Hyper-BCC→Rotated Hyper-Cubic

Order No. points Points P01+t2

1 16 {16(1, 1, 0, 0)}
{

1

16

}
3 80 {16(1, 1, 0, 0), 64(2, 1, 1, 0)}

{
12

128
,− 1

128

}
5 176 {16(1, 1, 0, 0), 64(2, 1, 1, 0), 72(2, 2, 1, 1), 24(3, 1, 0, 0)}

{
102

1024
,− 11

1024
,

1

1024
,

1

1024

}

TABLE VI

The PIC’s for the Four-Dimensional Filters: Rotated Hyper-Cubic→Rotated Hyper-BCC

Order No. points Points P02+t3

1 8 {8(1, 0, 1, 0)}
{

1

8

}
3 40 {8(1, 0, 1, 0), 32(2, 1, 1, 0)}

{
12

64
,− 1

64

}
5 88 {8(1, 0, 1, 0), 32(2, 1, 1, 0), 36(2, 2, 1, 1), 12(3, 1, 0, 0)}

{
114

640
,− 7

640
,− 1

640
,− 1

640

}

TABLE VII

The PIC’s for the Four-Dimensional Filters: Rotated

Hyper-BCC→Hyper-Cubic

Order No. points Points P03+t4

1 16 {16(1, 1, 1, 1)}
{

1

8

}
3 80 {16(1, 1, 1, 1), 64(3, 1, 1, 1)}

{
12

128
,− 1

128

}
5 176 {16(1, 1, 1, 1), 64(3, 1, 1, 1), 96(3, 3, 1, 1)}

{
102

1024
,− 11

1024
,

1

1024

}
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4. PROPERTIES OF MULTIDIMENSIONAL MULTIWAVELETS

In this section, we compare the separable and nonseparable multiwavelets with the tensor
product wavelets regarding their performance at compressing [7] several discontinuous test
functions, such as tetrahedrons, cubes, or spheres. These types of test functions are the
“worst” case that could happen, for example, in electronic structure problems, as well as in
many other phenomena in physics. We may thus judge how well a wavelet-based variational
scheme will perform based upon how well the multiwavelets represent these discontinuous
test functions.

4.1. Compression of Functions Using Multidimensional Multiwavelets

First, let us present some nomenclature:

• {P1, P2, . . . Pd} describes the order of the polynomial interpolation for the nonsepara-
ble multiwavelets, wherePi is the polynomial order of thei ′th filter.
• {{P1} ⊕ {P2} ⊕ · · · ⊕ {Pd}} describes the order of the polynomial interpolation for the

separable multiwavelets, wherePi is the polynomial order of thei ′th one-dimensional filter.
• {{P1} ⊗ {P2} ⊗ · · · ⊗ {Pd}} describes the order of the polynomial interpolation for the

tensor product wavelets, wherePi is the polynomial order of thei ′th one-dimensional filter.
• Compression ratio (CR),

CR=
[
1− Nw

2Jmax

]
, (94)

where Nw is the number of wavelet coefficients above the toleranceε, and Jmax is the
maximum resolution scale.
• Reconstruction error (RE)

RE=
∫

V dx | f (x)− fR(x)|2∫
V dx | f (x)|2 , (95)

where the reconstructed function is

fR(x) =
∑

k∈0J0

sJ0kΦJ0k(x)+
j=Jmax∑

j=J0,k∈0 j

η j k9 j k(x), (96)

and

{η j k} ≡ {|dj k | > ε} (97)

is the restricted set of coefficients which are above the toleranceε.

4.1.1. Compression of Functions in Two Dimensions

Figure 6 shows an analysis of the reconstruction error vs compression ratio for two-
dimensional multiwavelets of order{7, 7} and{{7} ⊕ {7}} as compared to a tensor product
wavelet of order{{7} ⊗ {7}} for the discontinuous test functions,

f (1)test(x) =
{

1 if x ∈ circle
0 otherwise

and f (2)test(x) =
{

1 if x ∈ triangle
0 otherwise

. (98)
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FIG. 6. The reconstruction error compression ratio for the nonseparable and separable, two-dimensional
multiwavelet of order{7, 7} and{{7} ⊕ {7}} for the discontinuous test functionsf 1

test(x) and f 2
test(x) as compared

to the tensor product wavelet of order{{7} ⊗ {7}}.

For almost the entire range of compression, the nonseparable and separable two-dimensional
multiwavelets are an order of magnitude smaller in the reconstruction error than the ten-
sor product wavelets. Since both the separable and nonseparable wavelets have a similar
performance at compressing discontinuous functions, we will focus on the nonseparable
wavelets in the following.
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FIG. 7. The reconstruction error vs angle for the nonseparable two-dimensional multiwavelet of order{7, 7}
and the tensor product wavelet of polynomial order{{7} ⊗ {7}} for the test functionftest(x, φ).

The reduction of performance of the tensor product wavelets is due to the strong mixing
of scales which biases these wavelets along coordinate directions. To demonstrate this let us
consider how the tensor wavelets and nonseparable multiwavelets compress the test function

ftest(x, φ) =
{

1 if x ∈ square rotated byφ
0 otherwise

, (99)

where the number of wavelet componentsNw is fixed by adjusting the toleranceε. Figure 7
shows the reconstruction error vs angle for our two-dimensional multiwavelets of order
{7, 7} as compared to a tensor product wavelet of order{{7} ⊗ {7}}. The number of wavelet
components was fixed toNw = 2000± 5. What can be seen from the figure is that the
tensor product wavelet is very sensitive to the squares orientation, whereas the nonseparable
multiwavelets show very little dependence on the squares orientation. This illustrates the
isotropic behavior of the multiwavelets.

4.1.2. Compression of Functions in Three Dimensions

Figure 8 shows an analysis of the reconstruction error vs compression ratio for our three-
dimensional multiwavelets of order{7, 7, 7} as compared to a tensor product wavelet of
order{{7} ⊗ {7} ⊗ {7}} for the discontinuous test functions

f (3)test(x) =
{

1 if x ∈ tetrahedron
0 otherwise

and f (4)test(x) =
{

1 if x ∈ sphere
0 otherwise

. (100)

In both cases, our nonseparable multiwavelets compress the test functions significantly
better then the tensor product wavelet of comparable order. The gain in the degree at which
the nonseparable multiwavelets outperform the tensor wavelet is even higher than that in
two dimensions. This trend should continue in higher dimensions and is due to the increased
scale mixing of the tensor product wavelets.
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FIG. 8. The reconstruction error vs compression ratio for the nonseparable three-dimensional multiwavelet
of order {7, 7, 7} and the tensor product wavelet of order{{7} ⊗ {7} ⊗ {7}} for the test functionsf 3

test(x) and
f 4
test(x).
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4.2. Isotropy of the Multidimensional Multiwavelets

Let us define a measure to determine the isotropy of these wavelets. Consider

ISO[ψ ] = 1−
√√√√∫V dR dÄ

∣∣ψ(n)(R, Ä)− ψ(n)
ave(R)

∣∣2∫
V dR dÄ

∣∣ψ(n)(R, Ä)
∣∣2 , (101)

where

ψ(n)
ave(R) =

1

Ä

∫
Ä

dÄψ(n)(R, Ä). (102)

If the function is radial symmetric, this measure is one, and if the function becomes nonradial
symmetric, then this measure approaches zero. In the next sections we use this measure to
show that the multiwavelets are more isotropic than the tensor product wavelets.

4.2.1. Three-Dimensional Polynomial Interpolating Multiwavelet

To illustrate the isotropy and smoothness of a nonseparable multiwavelet in three
dimensions, we present Figs. 9 and 10. Figure 9a shows an iso-surface plot for the three-
dimensional multiwaveletψ(1)(x) of order {7, 7, 7}. Figures 9b and 9c show a surface
and contour plot of this wavelet for thez= 0 plane. This wavelet is fairly isotropic and
smooth; the smoothness is due to the high degree of the polynomial interpolation, and the
isotropy is due to the symmetry of the lattice decomposition. Figure 10 shows the radial
plot of the same wavelet function of order{7, 7, 7} in the three different symmetry direc-
tions {x, y = 0, z= 0}, {x = y, z= 0}, and{x = y = z}. As can be seen from Fig. 10,
as the radius approaches zero the three-dimensional multiwavelet becomes more isotropic.
This should be contrasted with the tensor product wavelet in which this does not hap-
pen. Generally the tensor product wavelet will remain anisotropic as the radius approaches
zero.

Table VIII shows the isotropy measure of our three-dimensional nonseparable and sep-
arable multiwavelet of order{7, 7, 7} and {{7} ⊕ {7} ⊕ {7}} compared to tensor product
wavelets of order{{7} ⊗ {7} ⊗ {7}}. The tensor product wavelets are reasonably isotropic
as long as the difference in thej -scales are not too large but become very anisotropic
(ISO[ψ ] < 0.50) once the difference in thej -scales exceeds about 2. However, the mul-
tiwavelets are isotropic(ISO[ψ ] > 0.50) in all cases, especially the nonseparable multi-
wavelets(ISO[ψ ] > 0.75).

4.2.2. Four-Dimensional, Polynomial Interpolating Multiwavelets

We present Figs. 11 and 12 to further illustrate the isotropy and smoothness of the four-
dimensional nonseparable multiwavelet. Figure 11 is a surface plot for the four-dimensional
multiwaveletψ(1)(x) of order {5, 5, 5, 5} for the z= 0, t = 0 plane. Figure 12 shows
the radial plot of the same wavelet function of order{5, 5, 5, 5} in the four symmetry
directions{x, y = 0, z= 0, t = 0}, {x = y, z= 0, t = 0}, {x = y = z, t = 0}, and
{x = y = z= t}. Because the order of the polynomial interpolation is not as large as it
was in the three-dimensional case, this wavelet is not as smooth as its three-dimensional
counterpart. However, it is more isotropic. This can be clearly seen in Fig. 12, where the
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FIG. 9. (a) An iso-surface plot of the three-dimensional nonseparable multiwaveletψ(1)(x) for order{7, 7, 7}.
Also shown, (b) and (c), a density and surface plot of thez= 0 plane for this wavelet.
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FIG. 10. A radial plot of the three-dimensional nonseparable multiwaveletψ(1)(x) of order{7, 7, 7} in the
three symmetry directions.

relative degree of isotropy around the core region is greater than in the three-dimensional
case.

In Table IX we show the isotropy measure of the four-dimensional nonseparable multi-
wavelet of order{5, 5, 5, 5}. Again, as the isotropy measure indicates, this multiwavelet is
even more isotropic than its three-dimensional counterpart.

TABLE VIII

The Isotropy Measure for Comparison of the Multiwavelets

with the Tensor Product Wavelets

Tensor-product wavelet Order ISO[ψ ]

ψ3(x)ψ3(y)ψ3(z) {{7} ⊗ {7} ⊗ {7}} 0.8116
ψ3(x)ψ4(y)ψ4(z) {{7} ⊗ {7} ⊗ {7}} 0.5094
ψ3(x)ψ4(y)ψ5(z) {{7} ⊗ {7} ⊗ {7}} 0.3452

Separable multiwavelet Order ISO[ψ ]

ψ
(1)
3 (x, y, z) {{7} ⊕ {7} ⊕ {7}} 0.8116
ψ
(2)
3 (x, y, z) {{7} ⊕ {7} ⊕ {7}} 0.5196
ψ
(3)
3 (x, y, z) {{7} ⊕ {7} ⊕ {7}} 0.5094

Nonseparable multiwavelet Order ISO[ψ ]

ψ
(1)
3 (x, y, z) {7, 7, 7} 0.9433
ψ
(2)
3 (x, y, z) {7, 7, 7} 0.8585
ψ
(3)
3 (x, y, z) {7, 7, 7} 0.7531
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FIG. 11. A surface plot of the four-dimensional nonseparable multiwaveletψ(1)(x) of order{5, 5, 5, 5} for
thez= 0 andt = 0 plane.

FIG. 12. A radial plot of the four-dimensional nonseparable multiwaveletψ(1)(x) of order{5, 5, 5, 5} in the
four symmetry directions.
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TABLE IX

The Isotropy Measure for the Four-

Dimensional Nonseparable Multiwavelets of

Order {5, 5, 5, 5}

Nonseparable multiwavelet ISO[ψ ]

ψ
(1)
3 (x, y, z, t) 0.9612
ψ
(2)
3 (x, y, z, t) 0.8765
ψ
(3)
3 (x, y, z, t) 0.9615
ψ
(4)
3 (x, y, z, t) 0.8759

5. CONCLUSIONS

Using the lifting scheme devised by Sweldenset al.[21, 33, 34] and polynomial interpo-
lation inRd [17], we have constructed nonseparable and separable polynomial interpolating
multiwavelets in multiple dimensions. This was done by devising a scheme for periodically
subdividing multi-dimensional lattices such that inN = d number of steps we return to
the original lattice scaled by a factor of 2 in the coordinate directions. The scheme was
demonstrated by constructing three-dimensional separable and nonseparable multiwavelets
as well as four-dimensional nonseparable multiwavelets. Finally, the compressibility was
investigated and analyzed in terms of the isotropy of the wavelets. It was found that the
multiwavelets are more isotropic and efficient at compressing functions as compared to the
tensor product wavelets of similar order.

In the appendices, we present two practical algorithms which are a natural outcome
of the presented work (i) the in-place inverse wavelet transform which allows the cal-
culation of the value of a function at a point, where the function is represented in the
wavelet basis and (ii) the top–down algorithm which allows for the adaptive wavelet anal-
ysis of a function, where as an example of the efficiency of the top–down algorithm, we
present the wavelet transform of the potential generated by 32 arbitrarily placed point
charges.

It is possible to extend the presented methodology toward developing new classes of
wavelets. One possible extension of the presented research is in constructing orthogonal
multiwavelets. Another area of interest is constructing biorthogonal multiwavelets with
specific properties, such as ultra-sparse operator representations [12, 18]. We are working
toward this end by constructing a biorthogonal multiwavelet basis which diagonalizes the
Poisson operator [35]. In the immediate future, we are implementing the separable mul-
tiwavelets into a generalized object-oriented code for use in solving integral–differential
equations. This library should be partially suited for systems in which multiscale phenomena
are important, i.e., the electronic structure of condensed matter systems.

APPENDIX A

In-Place Inverse Wavelet Transform

Given a multidimensional wavelet representation of a function, Eq. (96), we would like
to devise an algorithm for calculating the function value at some pointx. The standard
approach is to sum over all the expansion coefficients multiplied by the basis functions at
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point x. However, this can be extremely time consuming for large basis sets, and for the
wavelet basis this approach does not take advantage of the wavelets’ locality. Instead, we
have devised an algorithm for calculating the value of functions, represented in the wavelet
basis, at pointx which takes advantage of the wavelets’ locality. This algorithm, instead
of scalingO(Nw), whereNw is the number of wavelet coefficients, scalesO(Jmax), where
Jmax is the finest scale of the wavelet expansion. The algorithm takes advantage of the
wavelet locality by calculating the inverse wavelet transform only in a region necessary to
continue onto the next scale; this is coded as follows:

ALGORITHM 2 (Inverse WTR (x, WTR(f(x)))).

1. begin
2. j = 0
3. while j ≤ jmax do
4. calculate xRange≈ 2 sup{ψ̃ j,2 j x}
5. loop over k
6. if ‖k − 2 j x‖ < xRange

7. calculatesj,k ← sj−1,k −
∑

l∈0j+tj U j,1dj−1,k−l k ∈ 0 j

8. calculatesj,k → dj−1,k +
∑

l∈0j
Pj,lsj−1,k−l k ∈ 0J + t J

9. end if
10. end loop
11. end while
12. end

APPENDIX B

Top–Down Algorithm

We have implemented a practical algorithm which calculates only the significant wavelet
coefficients, above some predetermined threshold,ε, of a function. The traditional approach
is to use the pyramid algorithm [10], which calculates all the wavelet coefficients from a
chosen finest scale of resolution up to the coarsest. This can be highly inefficient because a
large percentage of the coefficients are usually discarded. Here we have devised a method
for eliminating this problem, via a top–down algorithm [38].

The basis philosophy of the top–down algorithm is to use the coefficients at scalej
to estimate the coefficients at the finer scalej + 1; this is possible because the wavelet
coefficients at scalej are usually related to the wavelet coefficients at scalej + 1 via,

dj+1,k ≈ 2−(P+1)dj,k′ k ∈ sup
[
ψ̃
(n)
j,k′

]
, (B.1)

whereP is the number of vanishing moments of the wavelet, and the functionf (x) ∈ L2.
This relation suggests an algorithm for calculating the significant wavelet coefficients.

1. Calculate all the wavelets coefficients on scalejmin, where jmin is a resolution scale
which captures the “relevant” structure of the functionf (x).

2. Keep only those wavelet coefficients above some predetermined thresholdε. Since
the wavelets we use are interpolating, no prefiltering is necessary.

3. For each wavelet coefficient at scalej , calculate all wavelets coefficients at scale
j + 1 which are within the support of the wavelets at scalej .
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4. Keep only the wavelet coefficients above the thresholdε.
5. Repeat this process using the wavelet coefficients at scalej + 1 to deduce the wavelet

coefficients at scalej + 2, etc.

In pseudo-code:

ALGORITHM 3 (TopDownWTR(ε, jmin, jmax, f (x))).

1. begin
2. j = jmin: calculate{{d0,k}, . . . {djmin,k}}
3. while ( j ≤ jmax and N j

W 6= 0) do
4. loop over k ∈ {dj,k}
5. loop over k′ ∈ sup[dj,k ]
6. calculatedj+1,k′ =

∑
1 g̃j+1,l f (x− k′ − 1)

7. if |dj+1,k′ | < ε

8. storedj+1,k′ → {dj+1,k} : N j
W → N j

W + 1
9. end if

10. end loop
11. end loop
12. j → j + 1
13. end while
14. return {{d0k}, {d1k}, . . . {dj k}}
15. end

This algorithm has several advantages over the traditional approach,

• The time for the transform scales likeO(NW), whereNW is the number of wavelet
coefficients above the thresholdε.
• It is possible to calculate the wavelet coefficients to very fine scales of resolution,

where, in principle, no maximum scale is assumed.
• Function structures are adaptively resolved where they are needed.

However, one disadvantage of this algorithm is that there is no guarantee of obtain-
ing all the wavelet coefficients above the thresholdε; i.e., some details could be missed.
One remedy for this is to decrease the threshold. Another remedy of this problem is to
calculate theL2 norm of the function and theL2 norm of the wavelet representation
of the function. If the difference between these two norms is greater than the thresh-
old, then some coefficients have been missed, and the transform has to be restarted at a
finer scale. However, for most problems in physics we have to approximate knowledge
of the function’s behavior, and all the “relevant” features are already known. For exam-
ple, Fig. 13 shows a slice of a wavelet transform of 32 arbitrarily placed point charges;
i.e.,

ftest(x) =
32∑

i=1

1

|x− xi | xi ∈ [0, 1]3. (B.2)

Eight of the charges lie within the cut plane. Both the size of the circles and the colors
encode the scale on which the particular wavelet resides, blue being coarse and red being
fine. We also include a contour plot of the potential generated by these 32 point charges to
emphasize the adaptive placements of the wavelets. It is easily seen that the above algorithm
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FIG. 13. The placement of the multiwavelets on thez= 0 plane for 32 arbitrarily placed point charges in a
cubic box. Also shown is a contour plot of the potential.

very nicely resolves all the relevant structures of this function. It should also be noted to
what scale we were able to do the analysis,jmax= 38 or 238 number of points. This would
normally take a 500-MHz processor about 21

2 CPU years to calculate, whereas the top–down
algorithm took about 10 CPU min.
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